Transverse Echoes in RHIC

Wolfram Fischer

RHIC Beam Experiment Workshop BNL Science Education Center 15 October 2003

- Well known in plasma physics
- Sensitive method to measure diffusion
- Theoretical accelerator papers by Stupakov, Kauffmann (SSC)
- Longitudinal echos observed in
 - FNAL Antiproton Accumulator
 (Spenzouris, Colestock et al)
 - CERN SPS (Brüning et al)
 - BNL AGS (Kewisch, Brennan)

- Best produced by
 - Dipole kick, followed by
 - Quadrupole kick (1 turn)
- Quadrupole kick is difficult
 - Use air-core quadrupole from Tevatron (Dejan)
 - Built dedicated power supply
- Echo can also be created by 2 dipole kicks of different strength (F. Ruggiero, SPS)
- Best conditions in RHIC
 - Protons (less IBS than gold)
 - At injection (quad kick more effective)
 - Easy to refill

US-LHC Collaboration Meeting: Accelerator Physics Experiments for Future Hadron Colliders, BNL, 2000

Figure 1: Left: Horizontal particle distribution in normalized phase space after the initial dipole offset. Right: The same distribution 500 turns later.

Figure 2: Left: Horizontal particle distribution in normalized phase space right after a 1 turn long quadrupole kick placed 500 turns after the dipole kick. Right: The same distribution 500 turns after the quadrupole kick.

Figure 3: Left: The dipole moment of the distribution versus time after a dipole kick. Right: The same signal with an additional quadrupole kick at 500 turns after the dipole kick.

[W.Fischer, B. Parker, O. Brüning, "Transverse echos in RHIC", proceedings of the US-LHC Collaboration Meeting: Accelerator Physics Experiments for Future Hadron Colliders, BNL (2000).]

 Max. echo signal (Stupakov, Handbook) one-turn quadrupole kick

$$\eta^{\text{max}} = \frac{aQ}{\tau_d} \frac{\tau}{1 + 8D_0 \mu^2 \omega_0^2 \tau^3 / 3\varepsilon}$$

• a dipole kick, Q= β /f at quad (~0.02 RHIC) $\tau_d = T_0/4\pi\mu$, T_0 rev. time, $\omega_0 = 2\pi/T_0$ τ time between dipole and quadrupole kick μ detuning, D_0 diffusion coefficient ϵ distribution rms

Air core magnet

(Tevatron slow extraction)

$$1 = 1.5 \text{ m}$$

$$B/I = 3.6 \text{ T/kA}$$

$$L = 105 \mu H$$

$$I = 50 A$$

$$U = 800 \text{ V}$$

Both parameter sets are for a quadrupole strength of k = 2E-3/m (f = 500m)

[W. Fischer, A. Jain, D. Trbojevic, "The AC quadrupole in RHIC", BNL RHIC/AP/165 (1999).]

J. Addessi, O. Dressler (BESSY), J. Piacentino, D. Warburton

[O. Dressler, "Quadrupole kicker for RHIC", BNL C-A/AP/60 (2001).]

- Transverse echo should be observable
 - At injection, single bunch of protons
 - Vertical dipole kick $\sim 4\sigma$ (injection kicker)
 - One turn quadrupole kick ($k = 2 \times 10^{-3} \text{m}^{-1}$)
 - Signal detection with standard BPMs(million turns = 12 sec)
- Almost all hardware/software is in place
 - End-to-end test not yet done
- If echoes can be observed, transverse diffusion measurements should be possible (IBS, nonlinear dynamics)